Interpolatory sqrt(3)-Subdivision

نویسندگان

  • Ulf Labsik
  • Günther Greiner
چکیده

We present a new interpolatory subdivision scheme for triangle meshes. Instead of splitting each edge and performing a 1-to-4 split for every triangle we compute a new vertex for every triangle and retriangulate the old and the new vertices. Using this refinement operator the number of triangles only triples in each step. New vertices are computed with a Butterfly like scheme. In order to obtain overall smooth surfaces special rules are necessary in the neighborhood of extraordinary vertices. The scheme is suitable for adaptive refinement by using an easy forward strategy. No temporary triangles are produced here which allows simpler data structures and makes the scheme easy to implement.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Controllable Ternary Interpolatory Subdivision Scheme

A non-uniform 3-point ternary interpolatory subdivision scheme with variable subdivision weights is introduced. Its support is computed. The C and C convergence analysis are presented. To elevate its controllability, a modified edition is proposed. For every initial control point on the initial control polygon a shape weight is introduced. These weights can be used to control the shape of the c...

متن کامل

Matrix-valued 4-point spline and 3-point non-spline interpolatory curve subdivision schemes

The objective of this paper is to study and construct matrix-valued templates for interpolatory curve subdivision. Since our investigation of this problem was motivated by the need of such subdivision stencils as boundary templates for interpolatory surface subdivision, we provide both spline and non-spline templates that are necessarily symmetric, due to the lack of direction-orientation in ca...

متن کامل

Non-uniform Interpolatory Subdivision Based on Local Interpolants of Minimal Degree

This paper presents new univariate linear non-uniform interpolatory subdivision constructions that yield high smoothness, C and C, and are based on least-degree spline interpolants. This approach is motivated by evidence, partly presented here, that constructions based on high-degree local interpolants fail to yield satisfactory shape, especially for sparse, non-uniform samples. While this impr...

متن کامل

A constructive algebraic strategy for interpolatory subdivision schemes induced by bivariate box splines

This paper describes an algebraic construction of bivariate interpolatory subdivision masks induced by three-directional box spline subdivision schemes. Specifically, given a three-directional box spline, we address the problem of defining a corresponding interpolatory subdivision scheme by constructing an appropriate correction mask to convolve with the three-directional box spline mask. The p...

متن کامل

Non-uniform interpolatory subdivision via splines

We present a framework for deriving non-uniform interpolatory subdivision algorithms closely related to non-uniform spline interpolants. Families of symmetric non-uniform interpolatory 2n-point schemes of smoothness C are presented for n = 2, 3, 4 and even higher order, as well as a variety of non-uniform 6-point schemes with C continuity.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Comput. Graph. Forum

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2000